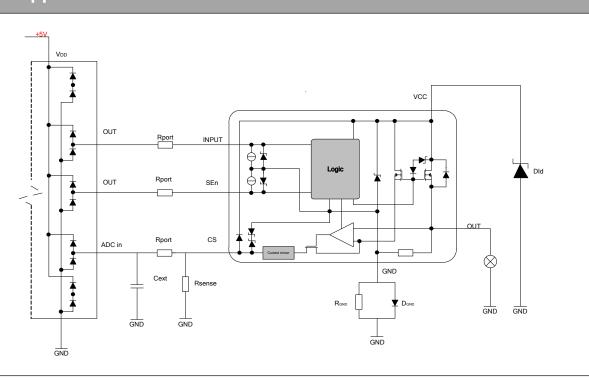
High-side driver with current sense analog feedback for automotive applications

Features

- Operating voltage range: 4.5V to 28V
- Load current limitation
- Output short-circuit protection
- Standby current <2.0µA
- On-state resistance Typ=12m Ω
- Thermal shutdown indication
- OFF-state open-load detection
- Overvoltage clamp
- Undervoltage protection
- Multiplexed analog feedback of load current with high precision proportional current mirror
- RoHS compliant and lead free
- AEC-Q100 qualified

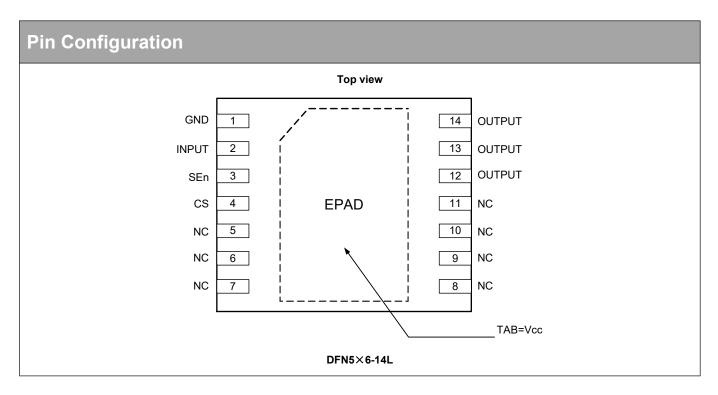

General Description

- WS7010AF is single channel high-side drivers with current sense analog feedback for automotive applications, the devices are designed to drive 12 V automotive grounded loads through a 3 V and 5 V.
- WS7010AF integrates advanced protective functions such as load current limitation, overload active management by power limitation and overtemperature shutdown.
- A dedicated multifunction multiplexed analog output pin delivers sophisticated diagnostic functions including high precision proportional load current sense, in addition to the detection of overload and short circuit to ground, short to V_{CC} and OFF-state open-load.
- A sense enable pin allows OFF-state diagnosis to be disabled during the module low power mode as well as external sense resistor sharing among similar devices.
- WS7010AF is available in DFN5×6-14L package.

Application

- All types of automotive resistive, inductive and capacitive loads
- Specially intended for automotive signal lamps

Typical Application Circuit



WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS www.winsemi.com Tel: 0755-82506288 Fax: 0755-82506299 A0 1/20

Ordering Information		
Package	Top Mark	Part No.
14 Din DENE V 6 141 Dh fron	WS7010AF	WS7010AF
14-Pin DFN5×6-14L, Pb-free	XXYMXX	WS/UTUAF

Pin Desc	Pin Description							
Pin Name	Pin NO.	Pin Description						
GND	1	Ground connection. Must be reverse battery protected by an external diode / resistor network.						
INPUT	2	Voltage controlled input pin with hysteresis, compatible with 3 V and 5 V CMOS outputs. It controls output switch state.						
SEn	3	Active high compatible with 3 V and 5 V CMOS outputs pin, it enables the CS diagnostic pin.						
CS	4	Multiplexed analog sense output pin; it delivers a current proportional to the selected diagnostic:						
NC	5/6/7/8/9/10/11	No connect.						
OUTPUT	12/13/14	Power outputs.						
V _{CC}	EPAD	Battery connection.						

WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS Tel: 0755-82506288 Fax: 0755-82506299 2/20 www.winsemi.com A0

Table 1. Suggested connections for unused and not connected pins

Connection / pin	CS	NC	OUTPUT	INPUT	SEn
Floating	Not allowed	X ⁽¹⁾	х	×	Х
To ground	Through 1K resistor	Х	Not allowed	Through 15K resistor	Through 15K resistor

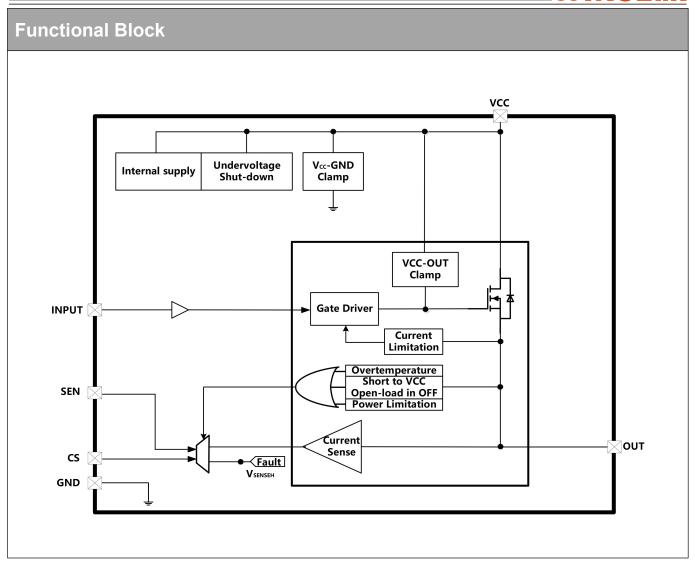
Note1: X do not care.

Current and Voltage Conventions VCC VCC VOUT VOUT

Absolute Maximum Ratings (Note3) Value Unit **Symbol Parameter** Vcc DC supply voltage 35 -V_{CC} Reverse DC supply voltage 0.3 ٧ DC reverse ground pin current 200 -I_{GND} mA Internally limited I_{OUT} **OUTPUT DC output current** Α $V_{\text{IN}}, \, V_{\text{SEn}}$ INPUT, SEn DC input voltage -0.3 to 6.0 V CS pin DC output current 20 ISENSE mA CS pin DC output current in reverse -20 T_{j} Junction operating temperature -40 to 150 $^{\circ}$ C T_{stg} -55 to 150 Storage temperature

Note3: Stressing the device above the rating listed in Absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to the conditions in table below for extended periods may affect device reliability.

ESD Susceptibility (Note4)						
Symbol	Parameter	Values	Unit			
V _{ESD(HBM)} ³⁾	ESD Susceptibility all Pins (HBM)	±2	kV			
V _{ESD(HBM)_} OUT	ESD Susceptibility OUT vs GND and Vcc connected (HBM)	±4	kV			
V _{ESD(CDM)} ⁴⁾	ESD Susceptibility all Pins (CDM)	±500	V			
Vesd(cdm)_crn	ESD Susceptibility Corner Pins (CDM) (pins 1, 8, 9, 16)	±750	V			


Note4:

- 1) Not subject to production test specified by design.
- 2) Maximum digital input voltage to be considered for Latch-Up tests: 5.5 V.
- 3) ESD susceptibility, Human Body Model "HBM", according to AEC Q100-002.
- 4) ESD susceptibility, Charged Device Model "CDM", according to AEC Q100-011.

Thermal Resistance (Note5)					
Symbol	Parameter	Value	Unit		
T _{JC}	Thermal Resistance Junction-to-Case	1.3	°C/W		
T _{JA}	Junction-to-Ambient Thermal Resistance	28	°C/W		

Note5: According to JEDEC JESD51-2,-5,-7 at natural convection on FR4 2s2p board; the Product (Chip + Package) was simulated on a $76.2 \times 114.3 \times 1.5$ mm board with 2 inner copper layers (2 × 70 μ m Cu, 2 × 35 μ m Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer.

Electrical Characteristics (Note6)

- /-	wer	60		а
	MAY #	P-7	 ray II	ш

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Operating supply voltage	Vcc		4.5	13	28	V
Under voltage shutdown	V _{USD}				4.5	V
Under voltage shutdown reset	V _{USDReset}				5	V
Under voltage shutdown hysteresis	V _{USDhyst}			0.3		V
		I _{OUT} =5A, T _j = 25℃		12		
On-state resistance	Ron	I _{OUT} =5A, T _j =150℃			25	mΩ
		I _{OUT} =5A, V _{CC} =4.5V, T _j = 25°C			20	
Nominal load current	I _{L(NOM)}	T _A =25℃		11		Α
Nominal load current at T _A =85℃	I _{L(NOM)_85}	T _A =85℃, T _j < 150℃		8.5		Α
Inverse Current Capability	I _{L(INV)}	V _{CC} <v<sub>OUT, V_{IN}=5V, T_A=25°C</v<sub>		11		Α
	V _{clamp}	I _s =20 mA, 25°C < T _j < 150°C	35	42	48	V
V _{CC} clamp voltage		I _s =20 mA, T _j =-40 °C	33			V
		V _{CC} = 13V, V _{IN} =V _{OUT} =V _{SEn} =0V,			2.0	
Supply current in standby st // = 12 //		T _j =25℃			2.0	μA
Supply current in standby at V _{CC} = 13 V	I _{STBY}	V _{CC} =13V, V _{IN} =V _{OUT} =V _{SEn} =0V,			6.0	μA
		T _j = 125℃			0.0	μΑ
Standby mode blanking time	to 0704	V _{CC} =13V, V _{IN} =V _{OUT} =0V	100	400	800	us
Standby mode blanking time	t _{D_STBY}	V _{SEn} =5 V to 0 V	100	400	800	us
Supply current	$I_{S(ON)}$	V _{CC} =13V, V _{SEn} =0V, V _{IN} =5V, I _{OUT} =0A		6	12	mA
Control stage current consumption in ON	lougram	Vcc=13V, V _{SEn} =5V, V _{IN} =5V, I _{OUT} =5A			12	mA
state	I _{GND(ON)}	VCC-13V, VSEn-3V, VIN-3V, IOUT-3A			12	IIIA
Officiate output current at Vac =13V	lu m	V_{IN} = V_{OUT} =0 V , V_{CC} =13 V , T_{j} =25 $^{\circ}$ C	0	0.05	0.5	μΑ
Off-state output current at V _{CC} =13V	I _{L(off)}	V _{IN} =V _{OUT} =0V, V _{CC} =13V, T _j =125°C	0		3.0	μA
Output - V _{CC} diode voltage at T _j =150℃	V _F	I _{OUT} =-0.2A, T _j =150℃			0.9	V

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Turn-on delay time at T_j = 25 $^{\circ}$ C	T _{d (on)}	- R _ι =2.6Ω	10	40	120	us
Turn-off delay time at T_j = $25^{\circ}\!$	T _{d (off)}	RL-2.012	10	75	120	us
Turn-on voltage slope at T _j = 25℃	(dV _{OUT} /dt) _{on}	- R _i =2.6Ω	0.05	0.2	0.7	V/us
Turn-off voltage slope at T _j = 25℃	(dV _{OUT} /dt) _{off}	RL-2.012	0.05	0.25	0.7	V/uS
Differential pulse skew(t _{PHL} - t _{PLH})	tskew	R _L =2.6Ω	-90	-	60	us

Logic input (IN, SEn)

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Logic input low level voltage	VL				0.9	V
Low level logic input current	lι	V _{INL} =0.9V	0.5			uA
Logic input high level voltage	V _H		2.1		6.0	V
High level logic input current	lн	V _{INH} =2.1V			12	uA
Logic input hysteresis voltage	V _(hyst)		0.1	0.3	0.7	V

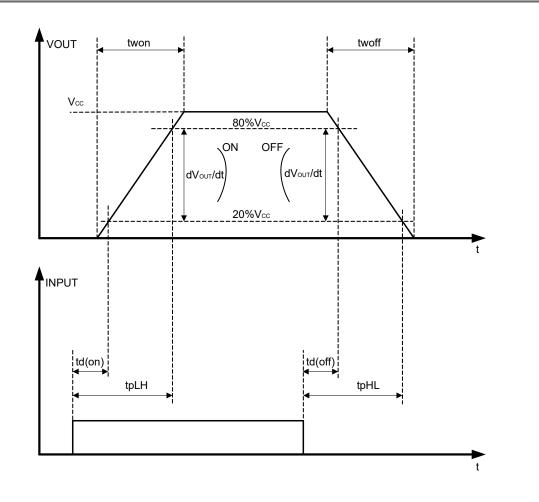
WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS www.winsemi.com Tel : 0755-82506288 Fax: 0755-82506299 6/20 A0

•						
Protections (7 V < V _{CC} < 18 V, -4	0℃ < T _j < 15	60℃)				
Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
DC abort aircuit aurrent		V _{CC} =13V	24	48	72	
DC short circuit current	ILIMH	4.5V < V _{CC} < 18V			72	Α
Short circuit current during themal cycling	I _{LIML}	V _{CC} =13V, T _R < T _j < T _{TSD}		20		
Shutdown temperature	T _{TSD}		150	175	200	$^{\circ}$
Thermal hysteresis	T _{HYST}			20		$^{\circ}$
Dynamic temperature	ΔT_{J_SD}	T _j = -40℃, V _{CC} =13V		60		$^{\circ}$
Current limit thermal hysteresis	T _R			40		$^{\circ}$
Turn-off output voltage clamp	V	I _{OUT} =2A, L= 6mH, T _j = -40℃	Vcc-33			V
Turn-on output voltage clamp	V_{DEMAG}	I _{OUT} =2A, L= 6mH, T _j =25℃ to 150℃	Vcc-35	Vcc-38	Vcc-43	
Current sense / 7 V < V _{cc} < 18 V	′, -40℃ < T _j <	< 150℃				
Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Current sense clamp voltage	V _{SENSE_CL}	V _{SEn} =0V, I _{SENSE} =1mA		-15		V
ouncin sense damp voltage	V SENSE_CL	V _{SEn} =0V, I _{SENSE} = -1mA		7		
Current sense characteristics						
Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
lout/Isense	K ₁	I _{OUT} =0.5A, V _{SEn} =5V	-50%	1600	+50%	
I _{OUT} /I _{SENSE}	K ₂	I _{OUT} =1A, V _{SEn} =5V	-35%	2185	+35%	
I _{OUT} /I _{SENSE}	K ₃	I _{OUT} =3A, V _{SEn} =5V	-15%	2915	+15%	
IOUT/ISENSE	K ₄	I _{OUT} =8A, V _{SEn} =5V	-10%	3250	+10%	
		CS disabled: V _{SEn} =0V	0		0.5	
Current sense leakage current		CS disabled: -1V <v<sub>SENSE<5V</v<sub>	-0.5		3	
	I _{SENSE0}	CS enabled: V _{SEn} =5V, V _{IN} = 5V, I _{OUT} =0A	0		200	uA
		CS enabled: V _{SEn} =5V, V _{IN} = 0V, I _{OUT} =0A	0		2	
Output voltage for CS shutdown	Vout_msd	V _{SEn} =5V, R _{SENSE} =2.7K, V _{IN} =5V;I _{OUT} =5A		5		V
CS saturation voltage	V _{SENSE_SAT}	$V_{CC}=7V$, $R_{SENSE}=2.7K$, $V_{SEn}=5V$, $V_{IN}=5V$, $I_{OUT}=16A$, $T_{j}=150$ °C	5			٧
CS saturation current	ISENSE_SAT	V_{CC} =7V, V_{SENSE} =4V, V_{IN} =5V, V_{SEn} =5V, T_{j} =150°C	4			mA
Output saturation current	lout_sat	V_{CC} =7V, V_{SENSE} =4V, V_{IN} =5V, V_{SEn} =5V T_{j} =150 $^{\circ}$ C	20			А
OFF-state diagnostic						
Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
OFF-state open load voltage detection threshold	V _{OL}	V _{SEn} =5V, V _{IN} =0V	2	3	4	٧
OFF-state output sink current	I _{L(off2)}	$V_{IN} = 0 \text{ V}, V_{OUT} = V_{OL}, T_j = -40 ^{\circ}\text{C} \text{ to } 150 ^{\circ}\text{C}$	-900	-400	-160	uA
OFF-state diagnostic delay time from falling edge of INPUT	t _{DSTKON}	V _{SEn} =5V, V _{IN} = 5V to 0 V, V _{OUT} =4V I _{OUT} =0A	100	350	700	us

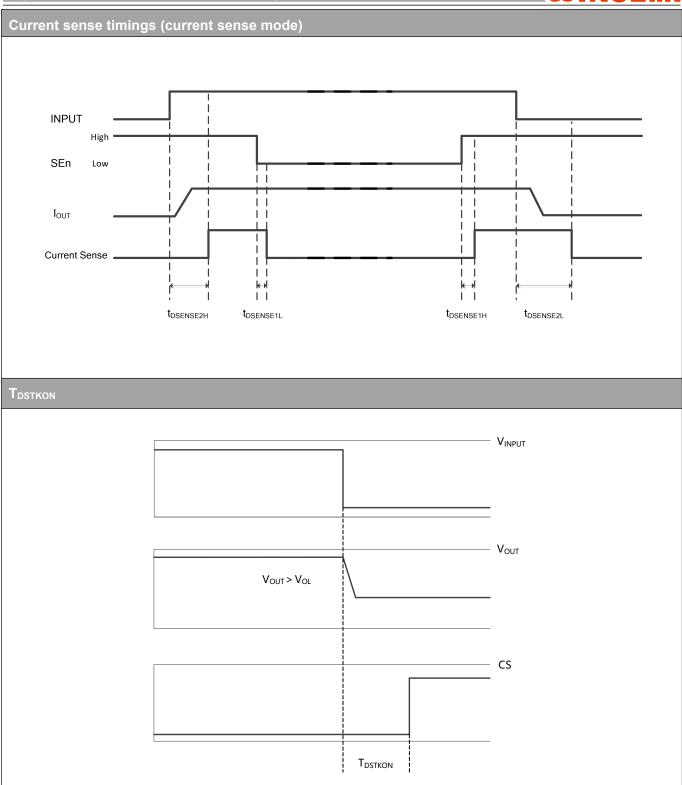
WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS www.winsemi.com Tel: 0755-82506288 Fax: 0755-82506299 A0 7/20

WS7010AF Product Description High-side driver with current sense analog feedback for automotive applications UINSEMI

Settling time for valid OFF-state open load diagnostic indication from rising edge of	t _{D_OL_V}	V _{IN} =0V,V _{OUT} =4V, V _{SEn} = 0V to 5V			150	us	
SEn							
OFF-state diagnostic delay time from		V _{SEn} =5V.V _{IN} =0V. V _{OUT} =0V to 4V		_	20		
rising edge of V _{OUT}	t_{D_VOL}	V _{SEn} =5V,V _{IN} =UV, V _{OUT} =UV to 4V		5	30	us	
Fault diagnostic feedback							
Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit	
Current sense output voltage in fault	.,	V _{CC} =13V, R _{SENSE} =1K, V _{IN} =0V, V _{SEn} =	.	0.0	0.0	.,	
condition	V _{SENSEH}	5V, I _{OUT} =0A,V _{OUT} =4V	5.0	6.0	6.6	V	
Current sense output current in fault				4.0			
condition	I _{SENSEH}	V _{CC} =13V, V _{SENSE} =5V	20	40	60	mA	
Current sense timings							
Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit	
Current sense settling time from rising		V _{IN} =5V, V _{SEn} =0V to 5V,					
Our crit serise setting time from rising	4	VIN-JV, VSEn-UV tO JV,			400		
edge of SEn	t _{DSENSE1H}	$R_{SENSE}=1K$, $R_L=2.6\Omega$			100	us	
		,					
edge of SEn	t _{DSENSE1H}	R _{SENSE} =1K, R _L =2.6Ω		5	100	us	
edge of SEn Current sense disable delay time from	t _{DSENSE1L}	R _{SENSE} =1K, R _L = 2.6Ω V _{IN} =5V, V _{SEn} =5V to 0V,		-	20	us	
edge of SEn Current sense disable delay time from falling edge of SEn		R _{SENSE} =1K, R _L =2.6 Ω V _{IN} =5V, V _{SEn} =5V to 0V, R _{SENSE} =1K, R _L =2.6 Ω		5			
edge of SEn Current sense disable delay time from falling edge of SEn Current sense settling time from rising	t _{DSENSE1L}	$R_{SENSE}=1K,\ R_L=2.6\Omega$ $V_{IN}=5V,\ V_{SEn}=5V\ to\ 0V,$ $R_{SENSE}=1K,\ R_L=2.6\Omega$ $V_{IN}=0V\ to\ 5V,\ V_{SEn}=5\ V,$ $R_{SENSE}=1K,\ R_L=2.6\Omega$		-	20	us	
edge of SEn Current sense disable delay time from falling edge of SEn Current sense settling time from rising edge of INPUT	t _{DSENSE1L}	$R_{SENSE}=1K,\ R_L=2.6\Omega$ $V_{IN}=5V,\ V_{SEn}=5V\ to\ 0V,$ $R_{SENSE}=1K,\ R_L=2.6\Omega$ $V_{IN}=0V\ to\ 5V,\ V_{SEn}=5\ V,$ $R_{SENSE}=1K,\ R_L=2.6\Omega$ $V_{IN}=5V,V_{SEn}=5V,R_{SENSE}=1K,$		-	20	us	
edge of SEn Current sense disable delay time from falling edge of SEn Current sense settling time from rising edge of INPUT Current sense settling time from rising	t _{DSENSE1L}	$R_{SENSE}=1K,\ R_L=2.6\Omega$ $V_{IN}=5V,\ V_{SEn}=5V\ to\ 0V,$ $R_{SENSE}=1K,\ R_L=2.6\Omega$ $V_{IN}=0V\ to\ 5V,\ V_{SEn}=5\ V,$ $R_{SENSE}=1K,\ R_L=2.6\Omega$		-	20 250	us	
edge of SEn Current sense disable delay time from falling edge of SEn Current sense settling time from rising edge of INPUT Current sense settling time from rising edge of Iout(dynamic response to a step	t _{DSENSE1L}	$R_{SENSE}=1K,\ R_L=2.6\Omega$ $V_{IN}=5V,\ V_{SEn}=5V\ to\ 0V,$ $R_{SENSE}=1K,\ R_L=2.6\Omega$ $V_{IN}=0V\ to\ 5V,\ V_{SEn}=5\ V,$ $R_{SENSE}=1K,\ R_L=2.6\Omega$ $V_{IN}=5V,V_{SEn}=5V,R_{SENSE}=1K,$		-	20 250	us	


Note6: Except for the special test instructions, all electrical parameters are tested under TA= +25°C. The minimum and maximum specification range of the specifications is guaranteed by the test, and the typical values are guaranteed by the design, test, or statistical analysis.

WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS Tel: 0755-82506288 Fax: 0755-82506299 8/20 www.winsemi.com A0


Switching Status and Timing Relationship

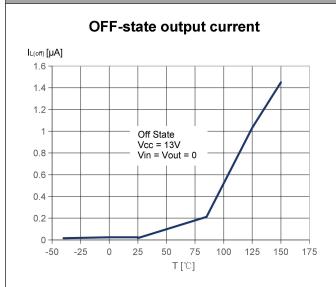
Switching time and pulse skew

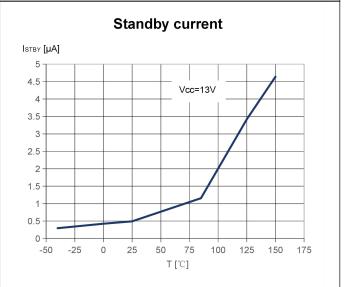
WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS www.winsemi.com Tel: 0755-82506288 Fax: 0755-82506299 9/20 A0

WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS www.winsemi.com Tel: 0755-82506288 Fax: 0755-82506299 10/20 A0

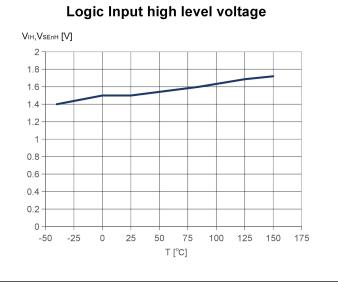
Table 2. Truth table

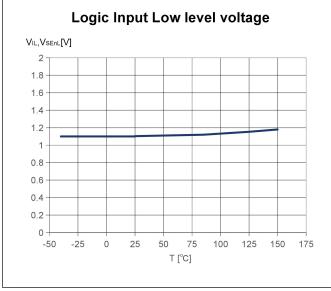
Table 2. Hall table							
Mode	Conditions	IN	SEn	OUT	Current sense	Comments	
Standby	All logic INs low	L	L	L	Hi-Z	Low quiescent current consumption	
	Nominal load connected;	L	See	L	See Table 3		
Normal	Nominal load connected; $T_j < 150^{\circ}C$	Н	Table 3	Н	See Table 3	Outputs configured for auto-restart	
	Overload or short to GND	L		L	See Table 3		
Overload	causing: $T_{j} > T_{TSD} \text{ or }$ $\Delta T_{j} > \Delta T_{j_SD}$	Н	See Table 3	Н	See Table 3	Output cycles with temperature hysteresis	
Undervoltage	V _{CC} <v<sub>USD</v<sub>	Х	Х	L	Hi-Z	Re-start when $V_{CC} > V_{USD} + V_{USDhyst}$ (rising)	
OFF-state	Short to Vcc	L	See	Н	See Table 3		
diagnostics	Open-Load	L	Table 3	Н	See Table 3	External pull-up	
Negative output voltage	Inductive loads turn-off	L	See Table 3	<0	See Table 3		

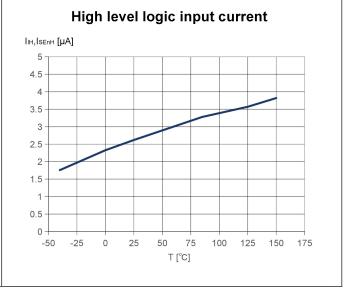

Table 3. Current sense output


SEn	MUX Channel	Current sense output			
SEII		Normal	Overload	OFF-state	Negative output
L		Hi-Z			
Н	Channel diagnostic	I _{SENSE} = I _{OUT} /K	V _{SENSE} = V _{SENSEH}	V _{SENSE} = V _{SENSEH}	Hi-Z

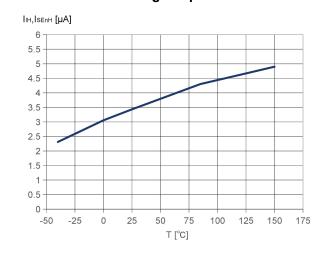
WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS Tel: 0755-82506288 Fax: 0755-82506299 11/20 www.winsemi.com A0

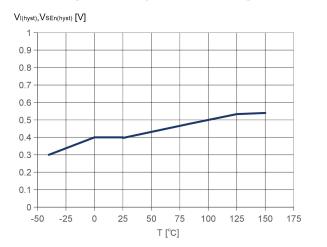


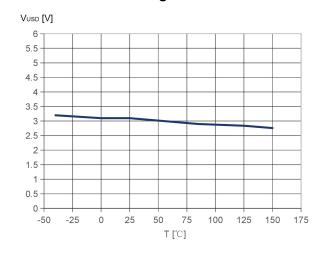

Electrical Characteristics Curves

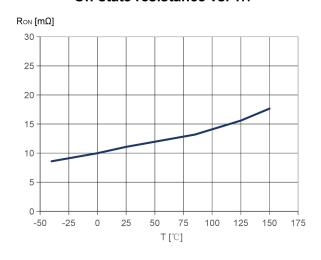


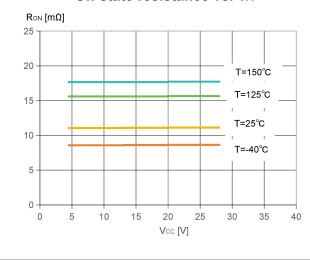
IGND(ON) vs. Ta IGND(ON) [mA] 10 9 8 6 Vcc=13V lout = 3A 5 4 2 0 -25 50 75 100 125 T [°C]

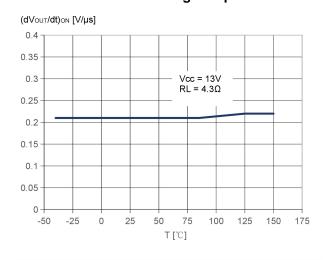





Low level logic input current

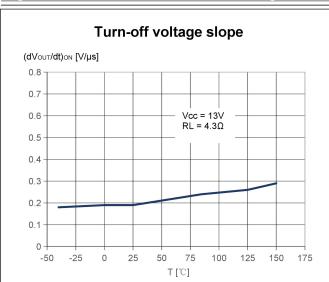

Logic Input hysteresis voltage

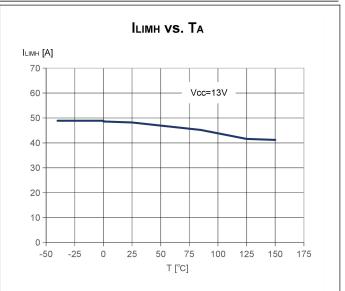

Undervoltage shutdown

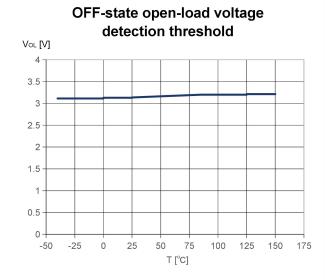

On-state resistance vs. TA

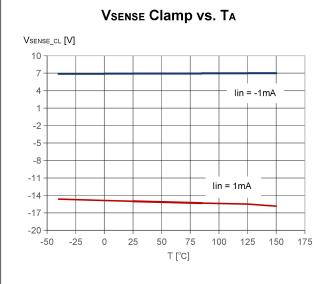
On-state resistance vs. TA

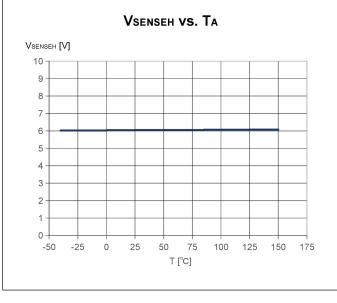
Turn-on voltage slope

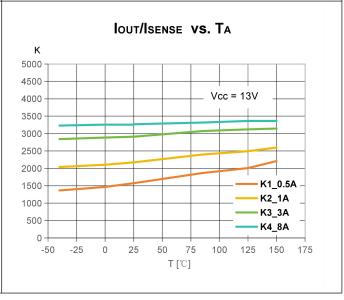



WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS Fax: 0755-82506299 A0 13/20


www.winsemi.com Tel: 0755-82506288







WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS www.winsemi.com Tel: 0755-82506288 Fax: 0755-82506299 A0 14/20

WS7010AF Product Description

High-side driver with current sense analog feedback for automotive applications

Functional Description

Power limitation

The basic working principle of this protection consists of an indirect measurement of the junction temperature swing ΔT_j through the direct measurement of the spatial temperature gradient on the device surface in order to automatically shut off the output MOSFET as soon as ΔT_j exceeds the safety level of ΔT_{j_SD} . The protection prevents fast thermal transient effects and, consequently, reduces thermo-mechanical fatigue.

Thermal shutdown

In case the junction temperature of the device exceeds the maximum allowed threshold (typically 175 $^{\circ}$ C), it automatically switches off and the diagnostic indication is triggered.

Current limitation

The device is equipped with an output current limiter in order to protect the silicon as well as the other components of the system (e.g. bonding wires, wiring harness, connectors, loads, etc.) from excessive current flow. Consequently, in case of short circuit, overload or during load power-up, the output current is clamped to a safety level, I_{LIMH}, by operating the output power MOSFET in the active region.

Negative voltage clamp

In case the device drives inductive load, the output voltage reaches a negative value during turn off. A negative voltage clamp structure limits the maximum negative voltage to a certain value, V_{DEMAG}, allowing the inductor energy to be dissipated without damaging the device.

Diode (D_{GND}) in the ground line

A resistor (typ.R_{GND}=4.7K) should be inserted in parallel to D_{GND} if the device drives an inductive load. This small signal diode can be safely shared amongst several different HSDs. Also in this case, the presence of the ground network produces a shift (\approx 600mV) in the input threshold and in the status output values if the microprocessor ground is not common to the device ground. This shift does not vary if more than one HSD shares the same diode/resistor network.

MCU I/Os protection

If a ground protection network is used and negative transients are present on the V_{CC} line, the control pins will be pulled negative. WS suggests to insert a resistor (R_{prot} =15K) in line both to prevent the micro-controller I/O pins from latching-up and to protect the HSD inputs. The value of these resistors is a compromise between the leakage current of micro-controller and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of micro-controller I/Os.

CS - analog current sense

Diagnostic information on device and load status are provided by an analog output pin (CS) delivering the following signals:

- · Current monitor: current mirror of channel output current
- V_{CC} monitor: voltage proportional to V_{CC}
- T_{CASE}: voltage proportional to chip temperature

Those signals are routed through an analog multiplexer which is configured and controlled by means of SELx and SEn pins, according to the address map in CS multiplexer addressing Table.

Current monitor

WS7010AF Product Description

High-side driver with current sense analog feedback for automotive applications

When current mode is selected in the CS, this output is capable to provide:

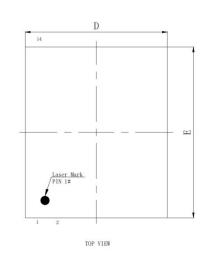
- Current mirror proportional to the load current in normal operation, delivering current proportional to the load according to known ratio named K
- Diagnostics flag in fault conditions delivering fixed voltage V_{SENSEH}

The current delivered by the current sense circuit, I_{SENSE} can be easily converted to a voltage V_{SENSE} by using an external sense resistor, R_{SENSE}, allowing continuous load monitoring and abnormal condition detection.

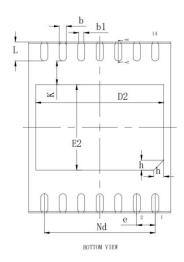
While device is operating in normal conditions (no fault intervention), V_{SENSE} calculation can be done using simple equations.

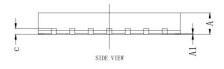
Current provided by CS output: Isense = Iout/K

Voltage on Rsense: Vsense = Rsense*Isense = Rsense* Iout/K

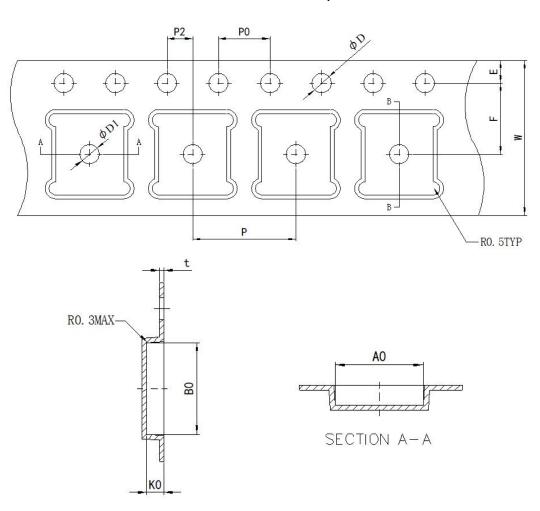

Where:

- V_{SENSE} is voltage measurable on R_{SENSE} resistor
- I_{SENSE} is current provided from CS pin in current output mode




Package Outline

DFN5×6-14L



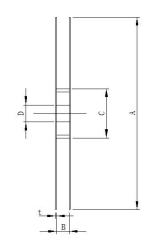
0)(140.0)	MILLIMETER				
SYMBOL	MIN	NOM	MAX		
Α	0.70 0.75		0.80		
A1	0	0.02 0.			
b	0.20	0.25	0.30		
b1	0.18REF 0.203REF				
С					
D	4.90	5.00	5.10		
D2	4.40	4.50	4.60		
е	0.65BSC 3.90BSC				
Nd					
E	5.90 6.00		6.10		
E2	2.90	3.00	3.10		
L	0.62	0.67	0.72		
h	0.30	0.35	0.40		
К	0.83REF				
W _{SC}	0.01	-	0.09		
t _{sc}	0.08	-	0.18		

Tape and Reel Information

DFN5×6-14L Carrier tape

SECTION B-B

Description	Value (Unit: mm)			
E	1.75±0.10			
F	5.50±0.05			
P2	2.00±0.05			
D	1.50±0.1			
D1	1.50 MIN			
P0	4.00±0.10			
W	12.00±0.1			
Р	8.00±0.10			
A0	5.30±0.10			
В0	6.30±0.10			
К0	1.20±0.10			


DFN5×6-14L Carrier Tape Dimensions

WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS Tel: 0755-82506288 Fax: 0755-82506299 18/20 www.winsemi.com A0

DFN5×6-14L Reel (13 ")

DFN5×6-14L Reel Dimensions

Description	Value (Unit: mm)		
Carrier width	12		
А	329±1		
В	12.4+2		
С	100±1		
D	13.3±0.3		
t	2.0±0.3		

Tape and Reel Information

Package	Reel	QTY/Reel	Reel/Inner Box	Inner Box/Carton	QTY/Carton	Inner Box Size (mm)	Carton Size (mm)
DFN5×6-14L	13 "	3000	1	8	24000	336×336×48	420×355×365

WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS Tel: 0755-82506288 Fax: 0755-82506299 19/20 www.winsemi.com A0

WS7010AF Product Description

High-side driver with current sense analog feedback for automotive applications

CONTACT

Winsemi Microelectronics Co., Ltd.

ADD: Room 3101-3102, 31F, Building 8A, Shenzhen International Innovation Valley, Nanshan District, Shenzhen,

P.R. China.

Post Code: 518040 Tel: 86-0755-82506288 Fax: 86-0755-82506299 Website: www.winsemi.com

WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS WINSEMI MICROELECTRONICS www.winsemi.com Tel: 0755-82506288 Fax: 0755-82506299 A0 20/20